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Formulation development of protein biopharmaceuticals
has become increasingly challenging due to new
modalities and higher desired drug substance
concentrations. The constraint in drug substance supply
and the need for a holistic set of analytical methods
means that only a small selection of excipients can be
thoroughly tested in the wet lab. Until now there have
been few in-silico tools developed to refine the candidate
excipients selected for wet lab testing. To fill this gap we
developed the Excipient Prediction Software (ExPreSo), a
machine learning algorithm that suggests inactive
ingredients based on the properties of the protein drug
substance and target product profile. A dataset of over
350 peptide/protein drug formulations with proven long-
term stability was created. The dataset was augmented
with predictive features including protein structural
properties, protein language model embeddings, and
drug product characteristics. Supervised machine learning
was conducted to create a model that suggests excipients
for each drug substance in the dataset. ExPreSo could
successfully predict the presence of the nine most
prevalent excipients, with validation scores well above a
random prediction, and minimal overfitting. A fast variant
of ExPreSo using only sequence-based input features
showed similar prediction power to slower models that
relied on molecular modeling. Interestingly, an ExPreSo
variant with only protein-based input features also
showed good performance, proving that the algorithm
was resilient to the influence of platform formulations in
the dataset. To our knowledge, this is the first time that
machine learning has been used to suggest
biopharmaceutical excipients. Overall, ExPreSo shows
great potential to reduce the time, costs, and risks
associated with excipient screening during formulation
development.
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Introduction

Formulation development is the process in which inactive
ingredients are chosen to be added to a drug substance in
order to stabilize it for manufacturing, distribution,
storage, and patient usage. For protein and peptide
biopharmaceuticals, these inactive ingredients, known as
excipients, must prevent protein degradation and
configuration changes which might affect efficacy and
safety’. From a regulatory and operational point of view, it
is desirable that formulations have an assigned shelf-life at
targeted storage temperature (e.g. 5°C £ 3°C or 25°C + 2°C
at 60% * 5% relative humidity) of at least 12 months. This
has to be enabled by the careful selection of the
formulation pH and a handful of excipients (usually no
more than 5). The large number of possible excipients and
of effects that need to be accounted for make formulation
development a highly complex field. Biologics license
applications also need to outline qualitative and
guantitative aspects regarding the use of each excipient
contained in the drug product
(EMEA/CHMP/QWP/396951/2006).

In order to reduce the above mentioned complexity, some
companies have relied on platform formulations for
developing their biopharmaceutical products.?® Typically,
this comprises a standard buffer and a list of excipients that
are tested against individual drug substances. This process
is combined with pre-screening to select molecules with a
low amount of chemical liabilities and aggregation prone
regions, and presumably, compatibility with the preferred
base formulation. Further incremental improvements are
usually made by exchanging individual excipients with
alternatives that have the same mechanism of action, while
keeping the remaining excipients constant. This approach
can save time and effort? at the cost of not testing a wider
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variety of excipients that might be better suited for the
protein of interest.

Recent market trends have shown an increase in drug
substance concentrations to allow subcutaneous
application of monoclonal antibodies (mAbs),*> and the
introduction of new biologics such as bispecific
antibodies®” and antibody drug conjugates.® These are all
challenging cases, whose formulation design must take into
account the specific characteristics and liabilities of the
drug substance under study. This applies to new drug
substances under investigation and also for reformulation,
for example to change from Ilyophilized to liquid
formulations and to move from intravenous to
subcutaneous applications.

In the development of biopharmaceuticals, there are in-
silico prediction tools supporting many processes before
and after formulation development, but few for the stage
of formulation development itself. In early drug
development, there are a growing number of prediction
tools supporting lead development, particularly for
antibodies®, and also for developability assessments aiming
to select stable candidates.'®? |In later stages of
biopharmaceutical development, physics-based methods
such as digital twins are well established for real-time
process optimization.'® For biopharmaceutical formulation
development itself, there exist only a few studies of in-
silico excipient screening. Molecular docking can been used
to identify excipients binding a protein,'* however most
docking algorithms are designed to identify strong binders
to act as inhibitors, rather than transient interactions.

The long-term stabilization of a drug substance involves
complex stochastic interactions of many elements, such as
protein-protein interactions, excipient-protein
interactions, and excipient-excipient interactions among
others. In order to produce an in-silico prediction of
successful long-term stabilization, all these elements need
to be modeled simultaneously, for extremely long time
scales. Complexity is increased even further by the fact that
some detergents are used in concentrations above their
critical micelle content, i.e., they exist as micelles in
solution, and need to be modeled accordingly, thus
increasing the minimum size of the simulation.'® This size
should also be large enough to account for other indirect
excipient effects such as preferential exclusion (for
example by sucrose).’®'” Taking into account all these
interactions is a computationally intensive task. With
current technology, such simulations take a large amount
of time, and are too expensive to be commercially viable.
So far, this type of calculations have only been published in
an academic context for a handful of excipients.®%2

Approaches to improve performance range from coarse-
grained molecular dynamics (MD) simulations® to Al
powered MDs, where Al-derived properties are used to
refine the force-fields used in molecular dynamics,?* or
machine learning models are trained to predict the
outcome of MD simulations.?®

An alternative approach to predict excipient binding in-
silico is to conduct short all-atom MD simulations with the
protein surrounded by a high concentration of the desired
excipient. This has been referred to as fragment mapping,
and can be used to rank excipients according to their ligand
affinity.262° All methods that look at overall protein-
excipient interactions rely on the assumption that general
excipient binding increases protein stability. However, it
has been shown that in many cases excipient binding does
not improve stability.3° Also, the exact sites of protein-
protein interaction or transient unfolding are usually
unknown, making it impossible to analyze the excipient
binding in only the most relevant regions.

An alternative solution is the development of machine
learning algorithms to predict stable formulations. A big
challenge in creating such an algorithm is the availability of
data, since it would need to be trained with a large number
of excipients and drug substances. Since this data is kept
confidential, this would only be feasible for companies with
a large and diverse drug substance portfolio. However,
what is publicly available is the final formulation for drugs
approved by regulatory authorities. This database of
formulations is growing rapidly>3! and it has already
enabled the first quantitative analyses of stabilizing
excipients,>3¥33 and trends over time.? To our knowledge,
this data has not yet been utilized for the development of
machine learning algorithms to predict stabilizing
excipients in formulations.

This machine learning approach is also supported by recent
advances in computational tools such as AlphaFold2 and
protein language models (pLMs). AlphaFold2 is a machine
learning algorithm that provided a breakthrough in the de-
novo prediction of protein structures.3* Whereas, pLMs are
large language models that have been trained explicitly to
predict protein sequences. A byproduct of pLMs are
protein embeddings, which are the vectorial
representation of each amino acid in the language model.*
Once a pLM is trained, the protein embeddings can be
rapidly generated from any input protein sequence. These
embeddings encode information about the amino acid and
their surroundings in the sequence. Their use has provided
a leap forward in predictive power for different machine
learning tasks such as the prediction of structure, function,
and epitopes.353°
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In this study, we created the Excipient Prediction Software
(ExPreSo) using the database of formulations of approved
biopharmaceuticals. ExPreSo is a group of machine
learning algorithms, each trained on predicting the
presence or absence of a particular excipient. It receives as
input a drug substance sequence and information about
the target product profile (TPP), such as pH, stock keeping
unit (liquid or lyophilized), and desired drug substance
concentration. As output, ExPreSo produces a series of
percentages, each representing the likelihood of a specific
excipient to be present in a stable formulation of the drug
substance. ExPreSo has predictive power for nine
excipients, and it is to our knowledge the first machine
learning algorithm of its type.

Results and Discussion

We created a dataset of FDA-approved formulations of
protein or peptide biopharmaceuticals. The dataset
contained 335 formulations, comprising 241 different drug
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substances. The dataset contained 150 formulations from
monoclonal antibodies (mAbs, 45%). Of the mAb
formulations in the dataset, the majority had heavy chains
of type 1gG1 (30% of the dataset, 68% of the mAbs, Figure
1A). An analysis of the FDA approval dates shows that the
number of protein/peptide drug formulations is increasing
rapidly (Figure 1D), and indeed a large proportion of the
dataset corresponded to drug formulations approved in
the last 5 years. The dataset included information about
the drug product, such as whether it was liquid or
lyophilized, the year of approval, and the company
(marketing authorization holder). This dataset was
supplemented with features derived from the in-silico
modeled 3D structures of the drug substances, such as size
of surface patches (positive, negative, ionic, hydrophobic),
charge dipole, and isoelectric point (Table S1). The dataset
was also supplemented with sequence-based features,
which included amino acid frequency, dipeptide frequency,
and protein embeddings extracted from the ProtT5
model.®®
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Figure 1. Main characteristics of the dataset used for machine learning. A) Composition of antibody type. B) Companies
retained in the input features. The large “Other Company” category enables the use of this feature in ExPreSo as a
bioinformatic tool (see Methods). C) Abundance of excipients in the dataset before selecting the top excipients used in
ExPreSo and dropping duplicates (see Methods). D) Cumulative number of approved formulations and drug substances in
the ExPreSo dataset, before dropping duplicates (same data as in Figure 1C).

To predict excipients in formulations, we created a collection of independent machine learning algorithms. Each algorithm
is an ExtraTrees classifier®® (an algorithm similar to Random Forest*!) that predicts the presence or absence of one excipient
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in the stable final drug product. Prediction is based on the protein properties and target product profile. Preliminary
experiments revealed that prediction power was only reliable for more common excipients, therefore ExPreSo is limited to
excipients present in more than 10% of formulations. This yielded nine excipient targets: acetic acid, citrate, histidine,
mannitol, polysorbate 20, polysorbate 80, sodium chloride, sodium phosphate, and sucrose

ExPreSo prediction power was best for acetic acid,
histidine, and polysorbate 80, however prediction for all
excipients was well above that of a random predictor
(Figure 2). With the exception of acetic acid, the prediction
power showed correlation to the abundance of the
excipient in the dataset (R? = 0.54 without acetic acid, 0.13
with acetic acid, see Figure 2C). We validated the predictive
power of ExPreSo using a Leave-One-Group-Out cross
validation (LOGO-CV) methodology and a blind test
validation (see Materials and Methods). In both cases we
measured the area under the curve (AUC) for the Receiver

Operating Characteristic (ROC) curve and for the Precision-
Recall (PR) curve. The dataset is small and unbalanced, in
that there were many more formulations without each
target excipient than with it. Because of this, there was
high run-to-run variation in prediction performance,
particularly for the blind test dataset. To counteract this we
always show the average performance metrics for 10
experimental runs with different random seed values.
ExPreSo showed high predicted power (ROC-AUC > 0.7) for
5/9 excipients in the LOGO cross-validation.
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Figure 2. Summary of predictive power for the nine excipients in ExPreSo. Cross-validation data against the train set was
carried out using leave-one-group-out methodology (see Methods). Data was aggregated over 10 experiment runs, each
using a different random seed value for creation of the test set and model parameters. In each boxplot, whiskers indicate
min and max, and the central line indicates the median. A) Precision Recall Area Under the Curve (PR-AUC). The baseline
(red dash) indicates the precision of a random predictor. B) Receiver Operating Characteristic Area Under the Curve (ROC-
AUC). The baseline (dotted line) indicates the performance of a random predictor. C) ROC-AUC Prediction power according
to ROC-AUC showed a correlation to the abundance of the excipient in the dataset, with the exception of acetic acid.
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While some excipients performed consistently over several
runs, such as polysorbate 80 and histidine (see Figure 2),
other excipients showed more varied behavior, such as
citrate and mannitol. In this small dataset, it is clear that
the randomized selection of which formulations were
present in the blind test set or train set had a large effect
on performance metrics.

The ExPreSo algorithm can be run so that it is either
interpretable or fast, based on the chosen subset of input
features used. For our “Interpretable” model, we excluded
sequence based features such as protein language model
embeddings and dipeptide frequency. The remaining
protein-based features were derived from 3D modeling,
and are human interpretable when examining feature
importances. To enable ExPreSo as a standalone predictor,
we created a “Fast” model that excludes features derived
from the 3D structures, which require slower molecular
modeling algorithms. Protein-based features in this Fast
algorithm are derived from sequence embeddings and
dipeptide frequencies, which can be calculated for a
sequence in milliseconds. However, protein embeddings
do not have a direct interpretation and dipeptide
frequencies are only weakly linked to protein properties, so
that the Fast model has low human interpretability when
examining feature importances. The performance of the
Interpretable and Fast models were comparable (Figure 3).

To test whether the dataset was too biased by company
platform formulations and excipient trends over time, we
created a “Protein-Based” version of the algorithm that
does not take into account any information related to the
manufactured product, such as the company, pH, year of
approval, and route of administration. Instead, the input
features of this model contained only the surface
properties derived from molecular modeling, protein type,
protein language model embeddings, and dipeptide
frequencies. If the non-protein features were very relevant
and thus our dataset heavily biased due to platform
formulations, we would expect to see a strong decrease in
performance when using only protein based features.
Interestingly, we observed only a small decrease in
predictive power for the Protein-Based model (Figure 3),
showing that the dataset and algorithm are surprisingly
resilient to the bias of platform formulations. This might
indicate a more tailored excipient selection than expected
for the formulations in the dataset. Firstly, it's possible that
the preferred excipients by certain companies were
strongly suited to the protein scaffold that the company
was using for multiple related drug substances. Secondly,
during developability screening and downstream
processing, there might be a selection of drug candidates
that are stable in the preferred platform formulation, as
part of a ‘platform fit’ approach.?
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Figure 3. Fast, interpretable, and protein-only versions of ExPreSo show similar performance. ExPreSo was validated using
different sets of input features (descriptors). The “Interpretable” model lacked sequence-based features such as pLM
embeddings. The “Fast” model lacked features derived from molecular modeling. The “Protein-Based” model used only
features based on the protein sequence and 3D structure. The AUC values shown here were obtained by LOGO cross-
validation (see Methods). Performance metrics shown are Precision Recall Area Under the Curve (PR-AUC), and Receiver
Operator Characteristic Area Under the Curve (ROC-AUC). The continuous middle line in the boxplot represents the median,
whereas dotted line represents the mean. For the ROC-AUC, the baseline (dotted line) indicates the performance of a

random predictor.
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Care was taken to ensure ExPreSo showed little overfitting,
which is a common problem in small datasets with a high
number of input features. To view the overfitting of all nine
excipients simultaneously, we developed an “overfitting
index”, which corresponds to the difference in the
performance metric between the LOGO-cross-validation
(LOGO-CV) and blind test validation, normalized to the
value of the LOGO-CV (Figure 4). High values indicate
overfitting. We applied several techniques to reduce
overfitting, including the automatic removal of correlated

features, feature reduction using principal component
analysis (PCA), and limiting all models to use only the 20
most predictive features (see Methods). After
implementation of these improvements, all algorithms had
minimal overfitting. The difference between LOGO-CV and
blind test performance was less than 25% for all excipients
and with a median of less than 10%. This gives certainty
that the model has similar predictive power for new drug
substances.
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Figure 4. Minimal overfitting was observed. Shown is the “overfitting index”, defined as the relative difference in
performance between the LOGO-CV and the blind test, for all analyzed feature subsets. Higher values indicate higher
overfitting. Values above zero (dotted line) indicate better performance for the LOGO-CV validation than the blind test. The
middle line in the boxplot represents the median. The whiskers extend until datapoints within 1.5 times the interquartile

range.

Examination of the feature importances for the
Interpretable model showed that both TPP and protein
features were important for prediction (see example for
the histidine model, Supplementary Figure S1). We
observed that many of the important features were proxies
for protein types, such as length, mass, and % of beta sheet
residues. However, the top features confirmed that the
model is performing as expected, for example, by
separating mAbs from non-mAbs. As the dataset grows and
when a more stringent clustering of similar proteins can be
performed we expect that feature importances would
indicate more directly the surface properties that are
relevant to excipient selection.

In our analysis acetic acid showed the highest
predictability, even though it was the excipient with the
least data (Figure 2C). We propose that the presence of
aceticacid is highly predictable due to its complete absence
in lyophilized formulations, and association with low pH.

Algorithms such as ExPreSo can be used to provide
excipient suggestions, in order to guide screening
experiments during formulation development. However, it
is important that the prediction score from ExPreSo for an
excipient is interpreted correctly. Specifically, ExPreSo
predicts the likelihood that this drug substance would be
formulated with the excipient of interest, if it were in a
drug product within this historical dataset with the input
target product profile. The output from ExPreSo could then
be included as one of the factors considered by a
formulation expert, alongside the many other factors that
may guide excipient preselection such as pre-formulation
experiments from that drug substance, the available
formulations of similar molecules, and the latest scientific
literature for the modality, protein family, and individual
excipients under consideration.

A possible improvement for ExPreSo would be to instead of
having a simple classifier, to create a multi-class predictor,
which might, for example, predict the presence of a
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detergent, a sugar/polyol or a buffer. This method is not
trivial in our current dataset since formulations might
contain more than one excipient belonging to these
groups, and excipients might perform multiple roles,
therefore belonging to different groups (for example
citrate can be grouped as antioxidant or buffer).

When interpreting ExPreSo results to design experiments it
is important to consider the underlying assumption that
the presence of each excipient is independent from one
another. This is of particular importance when ExPreSo is
used to predict an entire formulation. For example, the
presence of some excipient pairs that share a similar mode
of action (e.g. polysorbate 80/polysorbate 20 or
sucrose/trehalose) is strongly anticorrelated and it is highly
unlikely to find both excipients present in a single
formulation. When predicting these excipient pairs,
ExPreSo might suggest testing either or both of them.
Therefore, we recommend to always use ExPreSo only as a
suggested starting point and to analyze the logical sense of
each excipient suggested by ExPreSo before starting
experiments.

Another possible use of algorithms of this type would be to
assess the potential fit of a drug substance candidate to
preexisting platform formulations during the
developability process. In this case, the algorithm would
predict the excipient likelihood for many candidates and
the likelihood for the excipients in the platform
formulation could be turned into a metric. This metric can
then be used as one of the factors considered during a
developability analysis.

Finally, it is important to highlight that ExPreSo currently
only predicts excipient presence, not their concentration,
and cannot yet replace the careful testing of different
concentration combinations for the recommended
excipients.

Conclusion

To our knowledge, ExPreSo is the first machine learning
algorithm developed to suggest excipients for
biopharmaceutical formulation development. In a simple
approach, we created a group of independent machine
learning classifiers. Each algorithm can suggest whether a
particular excipient would be present in a stable
formulation of the drug substance under consideration.
The algorithms had good predicting power with minimal
overfitting and can be used to suggest excipients for new
drug products entering the market. ExPreSo also proved
surprisingly resilient to the influence of platform

formulations in the dataset, but did perform slightly better
when input features included drug product details such as
company. The Fast version of ExPreSo delivers results in
seconds. This approach significantly reduces the time
required for human-based literature review of
formulations for similar drug substances.

ExPreSo helps excipient preselection by using data-derived
decision making and thus reducing human bias. In the
future, as Al algorithms for excipient suggestion become
stronger, it should be possible to reduce the number of
excipients screened during formulation development. This
will decrease costs to pharmaceutical companies and
patients, and reduce the time required for drug product
development. As ExPreSo relies on approved drug
formulations and improves with increasing data (Figure
2C), the growing number of biologics entering the market
(Figure 1D) will considerably expand its dataset in the
coming vyears. This expansion will enhance ExPreSo's
predictive accuracy and increase the range of excipients it
can effectively predict, thereby boosting its overall utility.

Methods

A database was made of all formulations of drug products
approved by the FDA at the time of 27 September 2024.
This database was filtered to retain only formulations that
contained one active ingredient which had an available
amino acid sequence. The formulations were then
converted to a table where each row represented a
formulation, and each column represented an excipient.
For highly related compounds such as mono- or di-basic
versions of the same chemical, all the formulations
containing at least one of the related compounds were
classified as containing the excipient. For example,
formulations were deemed to contain the excipient
'sodium phosphate' whether the listed ingredient was the
mono- or dibasic form, or whether the chemical compound
was hydrated or anhydrous. Each cell in the table contained
the value True or False, representing the presence or
absence of a particular excipient in a formulation.
Duplicate formulations were removed if they had the same
International Nonproprietary Name (core name, excluding
biosimilar suffixes) and the same excipients. Excipients
found in less than 10% of the formulations were then
removed, resulting in nine remaining excipients. The
smaller number of excipients created new duplicate
formulations, which were again dropped.

To this dataset of excipients, we added information on the
drug product. Several categorical variables were one-hot
encoded, including the route of administration and stock
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keeping unit (liquid/lyophilized). The most recurring
companies (marketing authorization holders) in our
dataset were kept, while the rest of the companies were
grouped under “other company”. The number of kept
companies was selected such that “other company”
amounted to approximately 50% of the total formulations.
The date of marketing start of the product, the pH, and the
drug concentration were kept as numerical variables.
Missing numerical data was imputed with the mean value
of the remaining observations.

We then added a number of protein based features
(descriptors), based on sequence and generated
structures. For each protein, we calculated the frequency
of each individual amino acid and each possible dipeptide
pair in the sequence. We also added the sequence-based
isoelectric point and fraction of helix, sheet, and turn
residues using the BioPython ProtParam module.*? Protein
language model embeddings were calculated using the
ProtTrans model.3® Specifically, we calculated the
embeddings using full-length sequences and the
prott5_embedder.py script supplied by the ProtTrans
developers, using the default prot_t5_xl|_half_uniref50
model. When a drug substance had more than one
protein chain, the chains were concatenated for this
analysis. Since ProtTrans produces a vector of length 1024
for each amino-acid in the protein sequence, the
embeddings were aggregated for each protein by taking
the mean along the entire sequence.

Full-length 3D protein structures were then generated for
each active substance. Monoclonal antibody (mAb)
structures were generated using the antibody modeler
algorithm of Chemical Computing Group Inc Molecular
Operating Environment (MOE) version 2022.02, with the
default Fc glycosylation. Non-mAb drug substances were
modeled using AlphaFold234 and then protonated using the
quick-prep protocol of MOE. Surface properties were
calculated at pH 7.0 and 0.1 mM NaCl using MOE software
and added to the dataset. The dataset was further
supplemented with drug substance type. The type was
defined as a mAb if MOE detected a complementarity-
determining region (CDR). The IgG type (I1gG1, IgG2 or I1gG4)
was one-hot encoded. The full list of input features is given
in Supplementary Table S1.

The large number of features was reduced by first
removing the highly correlated features (R>0.8). We also
used principal component analysis (PCA) to reduce the
number of features, while retaining much of the
information. In order to maintain interpretability, PCA was
applied separately to groups of features. We retained ten
dimensions (features) for amino acid frequency, 32 for

dipeptide frequency, and 32 for embeddings. For the
features derived from the protein structures, we first
grouped the features by similarity, for example we made
groups of general hydrophobicity, hydrophobicity near
CDR, general negative patches, negative patches near CDR,
and so on. We then applied PCA, and reduced each group
to two dimensions. This reduced the initial 89 protein
properties calculated with MOE to 39, reducing the noise
generated by the large number of features while retaining
model interpretability.

The nine different machine learning algorithms were
trained independently of each other using the ensemble
Extra-Trees algorithm?® as part of the python Scikit-learn
package version 1.6.0 using the default hyperparameters.®
To improve accuracy we performed SMOTE oversampling®*
to balance the dataset. To reduce overfitting, the final
model used only the top 20 features, as determined by
feature importance in an initial model, measured using
SHAP.? Each of the nine machine learning models used a
different set of 20 final features.

For validation purposes we divided the formulations into
groups (clusters), taking care that similar drugs by name or
by sequence similarity would be included in the same
cluster. Clustering by sequence similarity was performed
using CD-HIT*®** on joined sequences containing all
domains of the full protein, with cutoff identity threshold
of 95% for mAbs, and 80% for non-mAbs. This ensured, for
example, that biosimilars were clustered with their original
innovator drugs, antibody-drug-conjugates were clustered
with their unconjugated forms, and that all peptide
variants (e.g. insulin human, insulin aspart, insulin glargine)
belonged to the same cluster. During machine learning
validation, all members within a cluster were either part of
the train set or the test set, but were never split between
both.

We created a blind test set comprising approximately 10%
of the observations/formulations, with the remaining
formulations forming the train set. We used the same blind
test set for all excipient models, ensuring that it contained
at least two formulations containing each excipient, and at
least two formulations lacking each excipient. To prevent
the validation results of the blind test from being
dominated by drugs that have been extensively
reformulated, only two representatives from each cluster
were retained in the blind test set, and the remainder were
dropped. Cross-validation within the train set was
performed using leave one group out validation, where the
algorithm was trained iteratively on all clusters except one,
and then tested on the remaining cluster. To counteract
the inherent high variability in validation metrics due to the
small dataset we ran the ExPreSo algorithm ten times using
different random seeds. The random seeds primarily
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affected the formulations selected for the blind test set,
but also were used in SMOTE oversampling and the Extra-

Trees

algorithm itself. The results presented here

correspond to the average of all ten runs.
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